Pandas的绘图方法

一般情况下,通过数据绘图都会使用 Matplotlib 库,当然本篇文章的内容也和它有关。在 Pandas 库中,有一些封装了 Matplotlib 的方法可以更简单地通过处理后的数据来绘制图表,当然要先导入 Matplotlib 库才能使用。

不管是 Series 还是 DataFrame 类型的数据,调用的方法都是一样的,只是后者要多处理一下。


线形图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 随机生成正态分布的 5 组数据,每组 5 个值
df = pd.DataFrame(np.random.randn(5,5), columns=list('ABCDE'))
# 绘制
df.plot()
# 显示
plt.show()

如图:
在这里插入图片描述
plot() 默认绘制 折线图(kind=‘line’),若要绘制其它图形,就要添加 kind 参数,以下是 kind 参数的选项:

kind 选项图形
line折线图( 默认 )
scatter散点图
bar条形图
barh横向条形图
hist柱状图
pie饼状图
box箱线图
kde概率密度分布图
density类似于 kde
area区域块图
hexbin六边形分箱图

当然也可以采用 plot.scatter()、plot.bar() 这样的形式。

散点图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.DataFrame(np.random.randn(25,5), columns=list('ABCDE'))
# 以 A 组的数据作为 x 轴,以 B 组的数据作为 y 轴,生成散点图
df.plot(x='A', y='E', kind='scatter')
plt.show()

如图:
在这里插入图片描述

条形图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.DataFrame(np.random.randn(5, 5), columns=list('ABCDE'))
df.plot(kind='bar')
plt.show()

把 5 个部分全部绘制出来了,如图:
在这里插入图片描述
若是要生成堆积条形图:

df.plot(kind='bar', stacked=True)
plt.show()

如图:
在这里插入图片描述
若要只绘制一个组,除了可以在 DataFrame 的操作上进行选择,也可以这样:

df.plot(y='C', kind='bar')
plt.show()

如图:
在这里插入图片描述

饼状图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 生成 3 组随机数,每组 3 个数据
df = pd.DataFrame(np.random.rand(3, 3), index=list('abc'), columns=list('ABC'))
df.plot(kind='pie', subplots=True, figsize=(12,6))
plt.show()

如图:
在这里插入图片描述


还有一些参数的作用( 列举部分 ):

参数说明
x标签或位置
y标签,位置或标签列表( 允许绘制一列与另一列 )
subplots为每列制作单独的子图
figsize以英寸为单位的元组(宽度,高度)
title标题
style线条样式
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 设计师:Steven·简谈 返回首页